
  ANL/ESD-22/2 

Vehicle Residual Value Analysis by Powertrain 
Type and Impacts on Total Cost of Ownership 

 

Energy Systems Division 
 



About Argonne National Laboratory 

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC 

under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, 

at 9700 South Cass Avenue, Lemont, Illinois 60439. For information about Argonne 

and its pioneering science and technology programs, see www.anl.gov. 

DOCUMENT AVAILABILITY 

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a growing  

number of pre-1991 documents are available free at OSTI.GOV (http://www.osti.gov/), 

a service of the US Dept. of Energy’s Office of Scientific and Technical Information. 

Reports not in digital format may be purchased by the public 

from the National Technical Information Service (NTIS): 

U.S. Department of Commerce 

National Technical Information Service 

5301 Shawnee Road 

Alexandria, VA 22312 

www.ntis.gov 

Phone: (800) 553-NTIS (6847) or (703) 605-6000 

Fax: (703) 605-6900 

Email: orders@ntis.gov 

Reports not in digital format are available to DOE and DOE contractors 

from the Office of Scientific and Technical Information (OSTI): 

U.S. Department of Energy 

Office of Scientific and Technical Information 

P.O. Box 62 

Oak Ridge, TN 37831-0062 

www.osti.gov 

Phone: (865) 576-8401 

Fax: (865) 576-5728 

Email: reports@osti.gov 

Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States  

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express  

or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific  

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or 

imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions  

of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, 

Argonne National Laboratory, or UChicago Argonne, LLC. 

http://www.ntis.gov/


ANL/ESD-22/2 

Vehicle Residual Value Analysis by Powertrain Type and 
Impacts on Total Cost of Ownership 

 

by 

Luke Rush, Yan Zhou, and David Gohlke 

Energy Systems Division, Argonne National Laboratory 

 

May 2022 



ii 
 
 

TABLE OF CONTENTS 

 

ACKNOWLEDGMENTS ............................................................................................................. iv 

LIST OF ACRONYMS .................................................................................................................. v 

ABSTRACT .................................................................................................................................... 1 

1. INTRODUCTION ...................................................................................................................... 1 

1.1. LITERATURE REVIEW ................................................................................................... 2 

2. DATA AND METHODOLOGY ............................................................................................... 5 

2.1. DATA SOURCES .............................................................................................................. 5 

2.2. METHODOLOGY ............................................................................................................. 9 

2.2.1.. Initial Vehicle Valuation  ..........................................................................................9 

2.2.2.. Depreciation Analysis .............................................................................................10 

2.2.3.. Regression Analysis ................................................................................................13 

3. RESULTS ................................................................................................................................. 15 

3.1. RESIDUAL VALUE TRENDS BY VEHICLE CHARACTERISTICS ......................... 15 

3.2. IMPACTS OF COVID-19 ON VEHICLE RESIDUAL VALUE .................................... 19 

3.3. COMPARISON BETWEEN SNAPSHOT METHOD AND TIME-SERIES  

METHOD ......................................................................................................................... 21 

4. DISCUSSION AND CONCLUSIONS .................................................................................... 25 

REFERENCES ............................................................................................................................. 28 

 

 

FIGURES 

 

1: Annual VMT by MY and Powertrain Type. Within each powertrain, each box and whisker 

represent MYs 2012–2020 in order from left to right. ............................................................... 6 

2: New-vehicle listing price as percentage of MSRP. x indicates mean. ........................................ 9 

3: Comparison between model-estimated and actual 3-year ARR for MYs 14-18. Note that 

positive residuals indicate that the model-estimated ARR is greater than the actual ARR. .... 12 

4: 3-year ARRs by powertrain and MY. Within each powertrain, each box and whisker represent 

MYs 2012–2020 in order from left to right. Note: data for MYs 2012–2020 are on display for 

all four powertrains, although they are very limited for BEV and PHEV in 2012. ................. 15 

5: Sales-weighted MSRP and electric range of all BEVs, 2012–2021. (2021 data through May.)

 .................................................................................................................................................. 16 

 



iii 
 
 

FIGURES (CONT.) 

 

6: Mean 3-year ARR by MY, powertrain, and market segment. The colors denote the 

powertrains, the solid lines and circles denote mass-market vehicles, and the dotted lines  

and x’s denote luxury vehicles. ................................................................................................ 17 

7: Mean 3-year ARR by MY, powertrain, and regulatory size class. The colors denote the 

powertrains, the solid lines and squares denote cars, and the dotted lines and triangles  

denote light trucks. ................................................................................................................... 18 

8: Month-by-month change in used-vehicle prices ....................................................................... 20 

9: Comparison between analysis results including (brighter colors) and excluding (behind  

those, faded) COVID-19 months (Apr.–Aug. 2020). (A horizontal line indicates the median 

and x indicates the mean. A horizontal line across the bar that is not close to the x likely 

indicates (1) a small dataset size, and (2) the presence of outlier(s). In the case of the purple 

bar for 2013, it is likely due to both reasons, but we can specifically see the outlier dot  

around 38%.) ............................................................................................................................ 21 

10: ARR over time: Comparison between snapshot and time-series methods. ............................ 22 

 

 

TABLES 
 

1: Mean Annual VMT by Various Vehicle Characteristics ............................................................ 6 

2: Makes and Models Selected for Analysis. Vehicles in plain text were considered in both 

depreciation datasets; italicized vehicles were analyzed only by the snapshot method (red), 

and underlined vehicles only by the time-series method (blue). ................................................ 8 

3: Comparison of WLS Regression Models for Three-Year Adjusted Retention Rate ................ 19 

4: Annual Depreciation Rates and First-year Adjustment by Powertrain and Market Segment.  

For each cell, the value on the left represents the snapshot method and the value on the  

right represents the time-series method (i.e., snapshot | time-series). ...................................... 22 

5: Base-case TCO Calculation Input Comparison for 15-Year ARRs. For each cell, the value  

on the left represents the snapshot method and the value on the right represents the  

time-series method (i.e., snapshot | time-series). ...................................................................... 23 

6: Proportional Differences (of Average ARR) between Size Classes (Cars and Light Trucks). 

For each cell, the value on the left represents the snapshot method and the value on the  

right represents the time-series method (i.e., snapshot | time-series). ...................................... 23 

 

  



iv 
 
 

ACKNOWLEDGMENTS 

 

 

This activity was supported by the Vehicle Technologies Office, Office of Energy 

Efficiency and Renewable Energy, United States Department of Energy. 

The authors thank Raphael Isaac of the Vehicle Technologies Office analysis program for 

support and constructive suggestions. The authors thank Edmunds for providing TMV data used 

in this report and for helpful suggestions and clarifications. 

This report was prepared as an account of work sponsored by an agency of the United 

States government. Neither the United States government nor any agency thereof, nor any of 

their employees, makes any warranty, express or implied, or assumes any legal liability or 

responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 

product, or process disclosed or represents that its use would not infringe privately owned rights. 

Reference herein to any specific commercial product, process, or service by trade name, 

trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 

recommendation, or favoring by the United States government or any agency thereof. The views 

and opinions of authors expressed herein do not necessarily state or reflect those of the United 

States government or any agency thereof. 

 

  



v 
 
 

LIST OF ACRONYMS 

 

AFV alternative fuel vehicle 

ANL Argonne National Laboratory 

ARR adjusted retention rate 
 

BEV battery electric vehicle 
 

DOE U.S. Department of Energy 
 

EPA U.S. Environmental Protection Agency 
 

HEV hybrid electric vehicle 
 

ICEV internal combustion engine vehicle 
 

KBB Kelley Blue Book 
 

LDV light-duty vehicle 
 

MSRP manufacturer’s suggested retail price 

MY model year 
 

OEM original equipment manufacturer 
 

PEV plug-in electric vehicle 

PHEV plug-in hybrid electric vehicle 
 

SUV sport utility vehicle 
 

TCO total cost of ownership 

TMV True Market Value 
 

VMT vehicle miles traveled 

 

WLS weighted least squares 

 



 

1 

VEHICLE RESIDUAL VALUE ANALYSIS BY POWERTRAIN TYPE AND IMPACTS ON 

TOTAL COST OF OWNERSHIP 
 

ABSTRACT 

 

Vehicle depreciation is a key factor in determining the total cost of vehicle 

ownership and consumer purchase behavior. This report examines how light-duty-

vehicle residual values have evolved over time for conventional and advanced 

vehicle technologies, accounting for important factors such as market segment, size 

class, and country of assembly. Advancements in electric vehicle technology have 

led to plug-in vehicles exhibiting depreciation curves similar to those of 

conventional vehicles. This report compares two methods for determining 

depreciation trends (snapshot method and time-series method) in order to identify 

potential impacts on calculating vehicle total cost of ownership given differing data 

availability.   

 

1. INTRODUCTION 

 

 Since the Chevrolet Volt and Nissan Leaf were first introduced in the United States in 

2010, plug-in hybrid electric vehicle (PHEV) and battery electric vehicle (BEV) sales have 

increased significantly. The market share of plug-in electric vehicles (PEVs), comprising PHEVs 

and BEVs, is growing. PEVs accounted for over 3% of light-duty-vehicle (LDV) sales in the 

U.S. in the first ten months of 2021 (ANL 2021). PEVs are available in a wide range of size 

classes and a growing number of makes and are experiencing rapid advances in technology 

(DOE and EPA 2021). 

However, market penetration of these PEVs is highly dependent on their cost 

competitiveness; it is unlikely that either consumers or automakers will be incentivized to invest 

in PEVs if they are not economically comparable to or better than conventional internal 

combustion engine vehicles (ICEVs). While PEVs tend to be more expensive to purchase than 

their conventional gasoline-powered counterparts, they also offer lower operational costs. Total 

cost of ownership (TCO) analyses of LDVs examine relevant vehicle ownership costs, including 

costs for both purchasing and operating the vehicle. Comprehensive TCO studies examine all 

potential costs, including depreciation, financing, fuel costs, insurance, maintenance and repairs, 

and taxes and fees. This approach provides a holistic cost comparison between vehicles with 

various characteristics, including between those with different powertrains. 

Comprehensive TCO analyses typically find that depreciation is the largest cost 

component, especially in the first few years of the vehicle’s life (Hamza et al. 2020; AAA 2019; 

Burnham et al. 2021). Since most new-car buyers do not own their vehicle for the entirety of its 

lifetime, depreciation is arguably the most important consideration in a new vehicle’s TCO. 

Depreciation is understood most simply as the difference between the price of a new vehicle and 

its residual value after a given time. While new vehicle prices are well understood and can be 

modeled using manufacturer’s suggested retail price (MSRP) or dealer listing prices, residual 

values are more varied and less well understood, especially for newer, advanced-powertrain 

vehicles. Therefore, examining how vehicles with advanced powertrain technologies, such as 
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PHEVs and BEVs, retain their value is crucial for identifying when these vehicles become 

economically comparable to conventional gasoline-powered counterparts.   

Understanding the residual value beyond the first owner is important for understanding 

vehicle sales on the used market, which is a factor in determining how readily new technology 

reaches economically disadvantaged communities, who disproportionately drive older vehicles. 

Automakers and financing providers have a stake in accurately estimating residual value as well. 

Lease contracts typically include a forecast residual value at which a lessee can purchase a 

vehicle at the end of the lease. 

In general, many factors affect the residual value of used vehicles. The National 

Automobile Dealers Association, Autoblog, Consumer Reports, Kelley Blue Book (KBB), and 

Edmunds all provide estimations of used-car resale values. The major factors these providers 

utilize when determining price include vehicle make, model and model year (MY), mileage, 

location, overall condition, and some other vehicle characteristics such as specific trim lines or 

additional equipment. Variation is especially evident in the case of PEVs, where battery 

performance and driving range, as well as accessibility to charging, may have a large effect on 

residual value. Additional factors such as market fluctuations, economic impacts, and various 

incentives at the federal, state, and local levels also affect depreciation; many of these exogenous 

factors are not directly captured in our analysis. 

In a recent multi-lab TCO report (Burnham et al. 2021), we used the “snapshot method,” 

which examines multiple MYs at one point in time, for example, by looking at MYs 13–19 in 

2020, to quantify generalized depreciation trends for vehicles with various characteristics. Since 

then, we have obtained a dataset with historical market value estimates which allows us to 

examine one MY over time, for example, by looking at MY16 in 2017-2021, henceforth referred 

to as the “time-series” method. This new dataset allows us to both examine depreciation trends 

over various MYs, amid recent rapid advancements in PEV technology, and quantify the 

potential impact on our recent TCO calculations derived from using the “time-series” method 

rather than the “snapshot” method.  

The objective of our study is to examine how different powertrains’ residual values have 

evolved over time amid rapidly improving PEV technology. We analyze this evolution using 

historical data, accounting for important factors such as market segment, size class, and country 

of origin of the automobile original equipment manufacturer (OEM). We also develop a method 

for estimating the residual value of recent MYs, for which we do not yet have many months of 

data, which allows us to investigate depreciation of even the most recent MYs. Our second 

objective is to compare depreciation rates between the “snapshot” and “time-series” 

methods/data in order to identify the potential impact on recent TCO calculations. 

 

1.1. LITERATURE REVIEW 

 

 While several studies have explored the resale value of PEVs, few, if any, comprehensive 

analyses of depreciation trends over time have been completed, owing to the scarcity of data. 

Furthermore, because of rapidly changing and improving advanced powertrain technology, it is 

imperative to continue to reassess residual value differences across powertrains to keep up with 

developments in technology. In 2012, Propfe et al. compared the residual value of vehicles with 
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conventional and advanced powertrains using data from the German market; however, PEV data 

were extremely limited at that time, so they used assumptions from other sources to estimate the 

residual value of these vehicles. Later, in 2016, Zhou et al. analyzed residual value across 

different powertrains using adjusted retention rate (ARR). Retention rate is proportional to 

residual value for any single vehicle; it provides the percentage of initial value retained, while 

residual value is the actual dollar value of the vehicle. In that study, the adjustment accounts for 

federal PEV incentives that reduce the cost to the consumer below the MSRP. They found that 

PEV retention rates are comparable to those of hybrid electric vehicles (HEVs) and conventional 

models in the early years but somewhat lower at three years and beyond. However, 3-year-old 

PEV data were still limited in 2016. A 2017 report by Moody’s Analytics likewise found that 

PEVs depreciate similarly to conventional counterparts in years one and two but depreciate more 

in years three and four (Vogan 2017). 

 In 2019, Guo and Zhou used True Market Value (TMV) data from Edmunds to examine 

residual value in a follow-up study to the 2016 Zhou et al. publication. They found that the long-

range, high-performance Tesla Model S holds value better than any other vehicle type evaluated. 

HEVs and PHEVs are comparable to each other and hold slightly less value than conventional 

models, but significantly more than short-range BEVs. However, short-range BEVs were shown 

to have a faster improvement in 3-year ARR than any other powertrain from MY13 to MY14. 

Schoettle and Sivak (2018) explored the resale value in 2018 of different powertrains using 

MSRPs from the U.S. Environmental Protection Agency (EPA) and private-party values from 

KBB. Their analysis of MYs 2011–2015 similarly indicated that, when accounting for federal 

incentives, PHEVs retained their resale value as well as conventional counterparts while BEVs 

lost resale value most quickly. A report by ING Economics in 2019 focused on BEVs in the 

European market, but similarly found that the Tesla Model S held value better than all other 

powertrain types and that newer BEV models showed improvement in residual value (Erich, 

2019). Interestingly, they also found that five-year residual value increased with electric range. 

iSeeCars.com, an automotive research firm and car search engine, has analyzed new- and 

used-car sales data to obtain 3- and 5-year depreciation percentages for specific vehicle models 

as well as averages within each powertrain technology. In both a 2019 and a 2020 report, they 

found that PHEVs and HEVs depreciate less than BEVs (Blackley 2019, 2020). In their 2020 

and 2021 reports (Blackley 2020, 2021), they found that the Tesla Model 3 held its value better 

than any other vehicle on the market (regardless of powertrain), consistent with other studies that 

find that Tesla models hold their value extremely well. A recent study by Fleet Forward and 

Vincentric analyzing MY20 and MY21 alternative fuel vehicles (AFV) in the U.S. market 

(Brown 2021) found that HEVs held value the best, followed by PHEVs and then BEVs. It also 

found that Teslas held value well, though they were negatively impacted by the absence of the 

federal incentive. However, these estimations were based on future projections rather than 

historical data. A recent study by Li and Chen (2020) evaluated the residual value of BEVs in 

China, separating the power battery from the vehicle itself. Although they used a very limited set 

of vehicle models, they found that BEVs lost value significantly faster than their ICEV 

counterparts, indicating that BEVs cannot develop independently in China without federal 

incentives. Hamza et al. (2020) collected real-world price data from KBB to model resale value 

in their TCO calculation. Similarly to the studies by Guo and Zhou (2019) and Schoettle and 

Sivak (2018), they found that PHEVs and ICEVs held value at relatively the same level, while 

BEVs experienced 11% lower 5-year retention.  
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 An increasing number of TCO studies include depreciation as a factor in their analysis. 

However, this approach raises a new challenge: estimating depreciation rates for new vehicle 

types. Many researchers have simply avoided directly addressing this emerging complexity, 

instead using the assumption of equal depreciation across powertrains (Hagman et al. 2016; 

Kampker et al. 2018; Morrison et al. 2018). Some studies have modeled depreciation as a 

function of vehicle miles traveled (VMT) (Wu et al. 2015) or included battery salvage (Letmathe 

and Suares 2017). Other studies have, on the other hand, attempted to differentiate between 

powertrains more broadly: Hamza et al. (2020), Lévay et al. (2017), and Breetz & Salon (2018) 

generalized powertrain depreciation trends from a small sample of vehicle models, and Gilmore 

and Lave (2013) used auction price data to model depreciation rates. 

 However, most of the residual value studies analyze a limited number of vehicle models 

and trim lines. Some do not account for federal incentives, which is a limitation given that 

considering federal incentives more accurately represents the true price for a buyer. Moreover, 

none of these studies explore depreciation trends over different MYs, instead simply examining 

depreciation across powertrains at one point in time. Using the former approach, however, is 

especially insightful in that it allows us to compare current depreciation rates in the context of 

past trends, rather than isolated within a single year. 
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2. DATA AND METHODOLOGY 

 

2.1. DATA SOURCES 

 

 To assess the residual value of various vehicles, we used data provided by Edmunds.com 

on the value of used LDVs (Edmunds 2020). Edmunds provides TMV of used vehicles based on 

real transactions. These estimates are updated monthly and reflect market conditions. We 

selected Edmunds over other data sources because many of the other third-party sources such as 

KBB, Autoblog, and Consumer Reports only provide TCO-formulated depreciation costs, which 

are based on projected costs rather than actual transaction prices. Furthermore, while we are 

aware of other sources that provide self-reported transaction data, such as truecar.com, it is 

challenging to validate the self-reported values with the true transaction prices. Finally, while 

there are sources such as KBB, Cars.com, Craigslist, and Facebook Marketplace that provide 

vehicle listing prices, it is difficult to ascertain the relationship between listing price and 

transaction price. Our research purpose is to quantify the general vehicle depreciation trends by 

vehicle size class, market segment, and powertrain type, not by make and model. As such, we 

selected one data source, Edmunds, for consistency and because its TMV data are based on real 

transactions. Future research is needed to compare the market value estimates from different 

resources. All TMV values are for private-party transactions involving used vehicles in clean 

condition. Typically, private-party purchase costs are lower than would be expected at a 

dealership, as dealerships need to cover costs related to salaries, overhead, and profit (Choksey 

2020). 

Results presented in this report come from two TMV datasets from Edmunds. The first, 

used in TCO calculations and referred to as the “snapshot data,” contains TMV from July 2020 

for MYs 2013–2019. This method provides a snapshot of TMV estimates at the time of 

collection: for example, TMVs at year one are estimates of MY2019 in July 2020 and TMVs at 

year three are estimates of MY2017 in July 2020. The second dataset, referred to as the “time-

series data,” contains historical monthly TMV estimates from January 2013 through April 2021 

for all trim lines over MYs 2010–2021 for the selected vehicle models. This second dataset 

allows us to track the residual value of a single MY and vehicle model over time rather than just 

obtaining a snapshot of the residual value of different MYs, as provided by the first dataset. 

For the snapshot data, TMV values assumed 12,000 annual VMT, which lies between the 

average annual VMT for cars and for light trucks reported by the Transportation Energy Data 

Book (Davis and Boundy 2020). To obtain a national average while accounting for geographical 

variation, TMV values were averaged across 51 zip codes (one in each of the 50 U.S. states and 

Washington, D.C.). When including all MYs and models, the standard deviation of mean TMV 

by zip code is about $300 for ICEVs and less than $200 for all other powertrains. We performed 

a sensitivity analysis of annual VMT and observed little effect on TMV for adjustments under 

approximately 3,000 miles per year. Note that depreciation is a function of both vehicle age and 

VMT (Propfe et al. 2012, Kleiner and Friedrich 2017). However, the TMV data we have do not 

support analysis identifying their correlation with VMT (see Section 2.3.2 for details). 

For the time-series data, all TMV estimates provided by Edmunds are national average 

values. Rather than a constant annual VMT for all vehicles (as in the case of the snapshot data), 

Edmunds provides a median mileage estimate for all TMV values which allows us to calculate 

the average annual VMT (mean 9,071; standard deviation 2,345). This average is lower than 
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what is reported in the Transportation Energy Data Book. We use the new vehicle market entry 

month as the start date for each vehicle and calculate the VMT each year thereafter. This method 

knowingly underestimates the mean annual VMT, since the new-vehicle market entry is a lower 

bound for the first time that a vehicle could accumulate mileage; however, it is very difficult to 

determine the calendar month when each vehicle model was typically sold to the first owner. 

Table 1 shows the mean annual VMT for all four powertrains considered (ICEV, HEV, BEV, 

and PHEV), for the mass-market and luxury-market segments, and for the car and sport utility 

vehicle (SUV) size classes. Note that the values in Table 1 are the average of all MYs; newer 

vehicles have less annual VMT and less variation, likely as a result of limited data points, shown 

in Figure 1. The mean annual VMT does not vary greatly between vehicles with different 

powertrains, market segments, or size classes, as shown in Table 1. While there is some variation 

between the two datasets and between various vehicle characteristics, it is less than the range 

within which we observed little effect on TMV in the sensitivity analysis. 

Table 1: Mean Annual VMT by Various Vehicle Characteristics 

Powertrain ICEV HEV BEV PHEV Average 

Mean Annual VMT 9,011 9,590 8,838 8,303 9,071 

      

Market Segment Mass Market Luxury Average   

Mean Annual VMT 9,560 7,985 9,071   

      

Size Class Car SUV Average   

Mean Annual VMT 8,931 9,501 9,071   

 

 

Figure 1: Annual VMT by MY and Powertrain Type. Within each powertrain, each box and 

whisker represent MYs 2012–2020 in order from left to right. 
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We selected 23 makes and 106 models (shown in Table 2) to cover different powertrain 

technologies, size classes, market segments, and various popular manufacturer brands and 

originating countries. Table 2 shows these specific vehicles; while most vehicles were used for 

both types of depreciation analysis, some models were only analyzed by the snapshot method 

(denoted in italics and red text), while others were only analyzed by the time-series method 

(denoted by an underline and blue text). The selection of vehicles for the snapshot method was 

described in greater detail in a recent report (Burnham et al. 2021). For the time-series method, 

we began by selecting the best-selling non-conventional vehicles; our analysis included 38 best-

selling PEV models and 25 best-selling HEV models in the U.S., accounting for 94% and 87% of 

total 2020 PEV and HEV sales (ANL 2021). To compare depreciation rates of AFVs and ICEVs, 

we picked conventional ICEV versions of the PEV and HEV models (e.g., Kia Soul, Kia Soul 

EV). When a direct conventional counterpart was unavailable, we picked a comparable model 

that fell into the same EPA size class and MSRP range (e.g., Nissan Leaf, Nissan Altima). In 

total, our time-series analysis included 38 ICEV models. 

Edmunds provided MSRP data for all vehicles in the time-series dataset. We obtained 

PEV federal incentive data from the IRS website (IRS 2020). For models for which federal 

incentives were being phased out during 2019 or 2020 (GM, Tesla), we computed a 2019 or 

2020 sales-weighted average incentive, respectively (ANL 2021). We obtained size-class data 

and new-vehicle market entry dates from the FuelEconomy.gov website (DOE and EPA 2021). 

For cross-validation, we compared the dates for vehicle release from FuelEconomy.gov with 

Edmunds, finding general agreement between the two sources. We aggregated depreciation by 

market segment (luxury/mass-market) as defined by Wards (Wards Intelligence 2021). 
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Table 2: Makes and Models Selected for Analysis. Vehicles in plain text were considered in both 

depreciation datasets; italicized vehicles were analyzed only by the snapshot method (red), and 

underlined vehicles only by the time-series method (blue).  

Make ICEV BEV PHEV HEV 
Acura MDX, ILX, RLX   MDX, RLX Sport 

Hybrid 

Audi A4, Q7 E-tron Q5 A8 

BMW 5 Series, 7 Series, 

X6 

i3 5 Series Plug-in, 7 

Series Plug-in, i8, X3 

 

Cadillac XTS    

Chevrolet Malibu, Spark, 

Cruze 

Bolt EV Volt Malibu Hybrid 

Chrysler Pacifica   Pacifica Hybrid 

FIAT 500 500e   

Ford Fusion, Escape  Fusion Energi Fusion Hybrid, 

Escape Hybrid,  

C-Max Hybrid 

Honda Civic, Accord Clarity Clarity Accord Hybrid, 

CR-V Hybrid, 

Insight 

Hyundai Sonata, Kona Ioniq Electric, 

Kona Electric 

Sonata Plug-in,  

Ioniq Plug-in 

Sonata Hybrid, 

Ioniq Hybrid 

Kia Optima, Soul Soul EV, Niro EV Optima Plug-in,  

Niro Plug-in 

Optima Hybrid, 

Niro 

Land Rover Range Rover, 

Range Rover 

Sport 

 Range Rover Plug-in, 

Range Rover Sport 

Plug-in 

 

Lexus ES350   ES300h, NX300h, 

RX450h 

Lincoln MKZ  Aviator Plug-in MKZ Hybrid 

Mercedes-

Benz  

GLE-Class B-Class Electric 

Drive 

GLC-Class  

Mitsubishi Outlander  Outlander Plug-in  

Nissan  Sentra, Altima Leaf   

Porsche  Panamera, 

Cayenne 

Taycan Panamera Plug-in, 

Cayenne Plug-in 

 

Subaru Crosstrek  Crosstrek  

Tesla   Model S, Model 

X, Model 3, 

Model Y 

  

Toyota  Camry, RAV4, 

Highlander, 

Avalon, Corolla 

RAV4 EV Prius Prime Camry Hybrid, 

RAV4 Hybrid, 

Highlander Hybrid, 

Avalon Hybrid, 

Corolla Hybrid, 

Prius, Prius c 

Volkswagen  Golf GTI E-golf   

Volvo XC90  XC90 Plug-in  
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2.2. METHODOLOGY 

 

2.2.1. Initial Vehicle Valuation 

When calculating depreciation, we used MSRP rather than new-vehicle transaction price 

as the initial value, because of data limitations; actual new-vehicle transaction prices for all MYs 

are difficult to ascertain. However, as most vehicles are sold beneath the MSRP, we examined 

the potential effect of this approach on our results. We gathered Starting Market Average values, 

an average new-vehicle transaction price based on actual recent transactions, from Truecar, and 

new-vehicle listing prices from Cars.com for all trim lines of all MY2020 and MY2021 vehicles 

listed in Table 2, if available (Truecar 2021; Cars.com 2021). For the listing-price data, we used 

Argonne National Laboratory’s zip code, 60439, as the location, but allowed for results within 

any distance; our results included listings up to 2,000 miles away. Therefore, the listing-price 

data came from many different parts of the country. Both Truecar and Cars.com provided the 

MSRP in addition to the Starting Market Average/listing price for each trim line. We used this 

MSRP value for our comparison to ensure that all trim lines, add-ons, and extra-equipment 

characteristics were identical between the MSRP and market value/listing price. 

Figure 2 shows the spread of new-vehicle listing prices as a percentage of MSRP for four 

powertrain types. Note that the difference between MSRP and listing price is generally small and 

that there isn’t a large difference between the different powertrains. The most significant 

difference is that BEVs are sold closer to MSRP than other powertrain types; this observation is 

consistent with other studies (Tal et al. 2017). This means that using MSRP underestimates the 

retention rate of the other powertrain types more than it underestimates the retention rate of 

BEVs. However, in analyzing technology trends over time within a single powertrain, this effect 

is not as relevant. 

 

Figure 2: New-vehicle listing price as percentage of MSRP. x indicates mean. 

Cars.com

Truecar.com
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To control for the effect of the federal tax incentive for PHEVs and BEVs, we define an 

adjusted retention rate, ARRi, such that 

𝐴𝑅𝑅𝑖 =
𝑃0 − 𝐼 − ∆𝑖

𝑃0 −  𝐼
, 𝑖 = 1,2,3, … Eq. 1 

where 

o ARRi  = the ARR at year i, 

o P0  = the MSRP in the year the vehicle was sold as new, 

o Δi = the accumulated depreciation through year i, and 

o I = the federal income tax credit applicable to a specific model. 

Using the ARR allows us to normalize across MSRPs and powertrain types that qualify 

for different federal tax credits. As discussed by Zhou et al. (2016), ARR is a more objective 

metric for comparing depreciation of BEVs, PHEVs, and conventional vehicles; since the 

Edmunds TMV data are based on real-world value, these data points are in fact more objective 

relative to this adjusted initial cost. As such, we use ARR. In this case, the ARR is given by 

𝐴𝑅𝑅𝑖 =
𝑇𝑀𝑉𝑖

𝑃0 −  𝐼
, 𝑖 = 1,2,3, … Eq. 2 

and the cumulative depreciation through year i is given by 

𝑃0 − 𝐼 − 𝑇𝑀𝑉𝑖 = (𝑃0 − 𝐼)(1 − 𝐴𝑅𝑅𝑖), 𝑖 = 1,2,3, … Eq. 3 

where TMVi = the resale value in year i. 

Ideally, we would compare actual transaction prices, including state policies and dealer 

incentives, in addition to the federal tax credit; however, it is very difficult to track these 

incentives as they change over time and may not be applied to each vehicle. Excluding state and 

local incentives and manufacturer rebates, nonetheless, artificially underestimates ARR for 

PEVs, primarily in those states with higher incentives. 

A potential impact on residual value when comparing MSRPs and market value estimates 

in different years is the effect of inflation. However, this effect is small during short time frames 

and discounting MSRPs and TMVs is beyond the scope of this project. Qualitatively, we 

consider the potential effect on our results: if we were to discount all historical MSRPs and TMV 

estimates, all ARRs would be shifted downward, and this effect would be greater for larger-year 

ARRs. This fact implies that we underestimate the annual depreciation rates obtained when 

fitting an exponential model to forecast depreciation for the lifetime of any generalized vehicle, 

as described by Burnham et al. (2021). Since inflation is measured in percentage terms, including 

the effect of discounting would shift all ARRs down by the same percentage; hence, larger ARRs 

are overestimated more, in absolute terms. 

 

2.2.2. Depreciation Analysis 

 We select a 3-year ARR to examine residual-value trends over different MYs for vehicles 

with various characteristics, such as powertrain, market segment, and size class. We use a 

relatively short time frame because it allows us to examine a wider range of MYs, as we need k 
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years of data to obtain a k-year ARR. Also, there is more variation in ARR in earlier years, 

which allows us to identify trends across various vehicle characteristics more easily. Finally, we 

use a 3-year ARR for direct comparison with previous studies (Guo and Zhou 2019; Zhou et al. 

2016). When calculating each vehicle’s 3-year ARR, we take the mean ARR of a seven-month 

period from 33 to 39 months after each vehicle’s new-market entry. For example, if a vehicle 

entered the new market in January 2017, our reported 3-year ARR would be the mean of the 

October 2019 through April 2020 ARR values.  

 Although we select a short-time-frame (3-year) ARR to examine residual value trends 

over time, for newer MYs (primarily MY19 and MY20), we do not yet have 3 years of data with 

which to calculate a 3-year ARR. To estimate the retention rate of these newer models, we fit an 

exponential function of the following form to the monthly ARR data that we have: 

𝐴𝑅𝑅𝑚 = 𝑏 ×  𝑒𝑥𝑝(𝑘 ∙ 𝑚)   , Eq. 4 

where b is a parameter representing a loss in residual value immediately upon initial sale, k is a 

parameter of the monthly depreciation rate, and m is the month since market entry. Fitting a 

model of this form assumes a constant monthly depreciation rate; high R2 values imply that this 

simplifying assumption is effective. 

For validation, we test this model fitting method on earlier MYs for which we know the 

actual 3-year ARR. For each MY14 through MY18 vehicle for which we have a 3-year ARR, we 

fit a model using from 3 up to 20 months of data. Aggregated results by powertrain comparing 

the model-estimated 3-year ARR with the actual 3-year ARR are shown in Figure 3, as a 

function of the number of months used for determining the fit. The mean residual is denoted with 

an x, where the solid bars represent the interquartile range (25th to 75th percentiles) and the error 

bars represent the models with the greatest discrepancy between the extrapolated ARR and the 

actual 36-month ARR. When fitting the model on at least seven months of data, the mean 

residual is less than one percentage point for ICEVs, HEVs, and PHEVs. Since we are interested 

in aggregated results by powertrain, rather than individual vehicle models, the mean value is of 

more interest than the spread. For any vehicle for which we have three years of data, we 

calculate the actual ARR at 36 (±3) months, as described previously. For newer-MY vehicles 

without three years of data, we estimate the 3-year ARR using the exponential model, given that 

there are at least seven months of data; vehicles without seven months of data are excluded from 

our analysis. 

As shown in Figure 3, the model fitting tends to overestimate BEV ARRs, even when 7 

or more months of data are used, likely owing in part to the smaller number of BEV vehicles we 

have data for. While this finding does suggest that our BEV 3-year ARR estimates (primarily 

MY19 and MY20) may be too high, it is important to note that seven months of data is only the 

cutoff for including a vehicle in our analysis; nearly all MY19 and many MY20 BEVs have 

significantly more months of data used for the model fit. In general, we expect our MY19 and 

MY20 BEV 3-year ARR estimates to be within four and five percentage points of the actual 

value, respectively. 
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Figure 3: Comparison between model-estimated and actual 3-year ARR for MYs 14-18. Note that 

positive residuals indicate that the model-estimated ARR is greater than the actual ARR. 

Using the new-market entry-date data from fueleconomy.gov (DOE and EPA 2021) and 

the TMV and MSRP data from Edmunds, we calculate or estimate ARRs for all individual trim 

lines with at least seven months of TMV data. However, as some vehicle models have more 

available trim lines than others, we then average ARR values across all trim lines within a 

vehicle model so that each model has equal weight. The results averaged at the model level are 

then used in all further figures and results in this report. 

We compare results with those of Burnham et al. (2021) to quantify the potential impact 

of methodological changes on TCO calculations. In short, we fit an exponential function of the 

form  

𝐴𝑅𝑅𝑖,𝑚,𝑝 = 𝑏𝑚,𝑝  ×  𝑒𝑥𝑝(𝑘𝑚,𝑝 ∙ 𝑖) Eq. 5 

to all of the ARR data in each powertrain (denoted as ‘p’), market segment (denoted as ‘m’) 

subset; each subset include ARRs for each age, i, of each vehicle for which we have data. This 

process is largely the same for the snapshot and time-series methods, except for a subtle 

difference: In the case of the snapshot method, the independent variable of the data upon which 

we fit the exponential function is the years since MY (i.e., year 3 = MY17, since market 

estimates are from 2020), for multiple MYs and a single calendar year. For the time-series 

method, the independent variable is also the years since MY, but for a single MY and multiple 

calendar years (i.e., for MY16, year 3 = calendar year 2019). 

As discussed by Kleiner and Friedrich (2017) and Propfe et al. (2012), residual value can 

be interpreted as a function of both age and VMT, the latter two being highly correlated. For 

medium- and heavy-duty vehicles, Burnham et al. (2021) use a multi-dimensional model 

considering both VMT and age of used-vehicle listings, while assuming an average VMT 

schedule for LDVs and quantifying light-duty residual value as a function of vehicle age. 

Conversely, Sallee et al. (2016) focus on variations in residual value as a function of VMT 
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instead of as a function of age. Since the Edmunds TMV data used in this report only provide 

one mileage value per monthly TMV estimate, we are unable to explore the additional effect of 

VMT on a single vehicle’s retention rate. Analyzing variation in mileage means that we must 

analyze an entirely different vehicle, or the same one of a different age, making it challenging to 

differentiate the effect of VMT from other variables. Furthermore, vehicle age and VMT are 

highly correlated in our dataset (R2 = 0.92), possibly indicating that Edmunds simply utilizes a 

linear relationship between age and mileage when determining its “medium mileage” national 

average values. As such, it is nearly impossible to distinguish between the effect of age and of 

VMT in this dataset; by using age as our independent variable, we also capture nearly all the 

variation in VMT. Since the mileage intervals are not consistent, we examine residual value as a 

function of vehicle age. In our analysis, we examine average representative driving 

characteristics; exploring effects of VMT on retention rate is an interesting but separate research 

question. We do find that there is high correlation between VMT and ARR (R2 = 0.78). 

Examining the relationship between vehicle age, VMT, and residual value is important future 

work. 

 

2.2.3. Regression Analysis 

 To quantify the impact of several important factors, including powertrain, market 

segment, size class, and automaker, and to make comparisons with previous studies, we perform 

several weighted least squares (WLS) regression analyses. For our quantitative analysis, rather 

than averaging the trim-line retention rates to the model level, we retain the trim-line-level 

results for statistical robustness. To ensure that each vehicle model is still given equal weight, we 

use a WLS model instead of a more traditional ordinary least-squares model, where the weight 

for each trim line’s retention rate is 1 divided by the number of trim lines within that given 

vehicle model. 

We consider WLS regression models—one on all MYs combined and one each on 

MY14, MY17, and MY20—to observe trends over time. The dependent variable is 3-year ARR. 

For comparison with the results of Guo and Zhou (2019), we include the same five independent 

variables in our regression model: powertrain, market segment, size class, OEM country, and 

Tesla or not. In future research, we could consider including more variables, such as MSRP and 

vehicle range. As all of these are categorical variables, we use Boolean dummy variables, 

indicating whether or not that variable is associated with a given vehicle, to create a linear model 

of the form 

𝐴𝑅𝑅3,𝑣 = 𝛽0 + 𝛽1 ∙ BEV𝑣 + 𝛽2 ∙ ICEV𝑣 + 𝛽3 ∙ HEV𝑣 + 𝛽4 ∙ PHEV𝑣  
                           +𝛽5 ∙ luxury𝑣 + 𝛽6 ∙ mass market𝑣  
                           +𝛽7 ∙ car𝑣 + 𝛽8 ∙ light truck𝑣  
                           +𝛽9 ∙ Germany𝑣 + 𝛽10 ∙ Japan𝑣 + 𝛽11 ∙ Korea𝑣 
                           +𝛽12 ∙ U. K.𝑣  + 𝛽13 ∙ U. S.𝑣+ 𝛽14 ∙ Tesla𝑣 

Eq. 6 

where ARR3,v is the 3-year ARR of vehicle v. For example, for the Toyota Prius, variables HEV, 

mass market, car, and Japan will equal 1 and the rest will equal 0. We considered including 

annual VMT as an additional factor in the regression analysis, to observe its effect on 3-year 

ARR when other variables are controlled for; however, in all four models, it was not a 

statistically significant variable. Since there is such high correlation between age and VMT in 
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our dataset and we are holding age constant (at three years) across all vehicles, the VMT is likely 

not a statistically predictive factor. 
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3. RESULTS  

 

3.1. RESIDUAL VALUE TRENDS BY VEHICLE CHARACTERISTICS 

 

Figure 4 shows the spread and average 3-year ARRs for each powertrain type in MYs 

2012–2020. Note that for many of the MY19 and MY20 vehicles, the 3-year ARR is an estimate 

using an exponential model, as described in the Methodology section. We observe that the more 

mature powertrain technologies, such as ICEV and HEV, have more consistent 3-year ARRs 

over time, while the newer powertrain technologies vary more over time. Similarly, within a 

single MY, the variation in 3-year ARR of the advanced powertrain vehicles, especially BEVs, is 

larger than that of ICEVs and HEVs. For most MYs before 2017, PHEVs and BEVs experienced 

lower retention rates than their conventional counterparts. This is especially true for BEVs, 

whose ARRs were 10+ percentage points lower in MY15. However, since then, PEVs have 

increasingly retained value, to the point where they have retained value better than ICEVs and 

HEVs in recent MYs. The difference in retention rate between ICEVs and HEVs tends to be 

small, with one experiencing higher 3-year ARRs in some MYs and the other in other MYs. 

 

Figure 4: 3-year ARRs by powertrain and MY. Within each powertrain, each box and whisker 

represent MYs 2012–2020 in order from left to right. Note: data for MYs 2012–2020 are on display 

for all four powertrains, although they are very limited for BEV and PHEV in 2012.  

There are several possible explanations for these results. Since 2014 and 2015, increasing 

capabilities of BEVs have made them much more viable alternatives to their conventional 

counterparts. This factor carries over to the used-vehicle market, hence the higher 3-year ARRs 

in recent MYs. As shown in Figure 5, the sales-weighted BEV range, a measure of how far a 

BEV can drive on a single charge, which is a common indicator of BEV capability, increased 

from around 130 miles in 2014 to over 300 miles in 2020 (ANL 2021). Relatedly, it is reasonable 

to assume that decreasing prices of new BEVs drive down the prices of used PEVs (Holweg and 

Kattuman 2006). Figure 5 indicates that the sales-weighted MSRP of BEVs (using MSRP of the 
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lowest-cost trim line by model) increased only slightly from 2014–2015 to 2017–2018, when the 

3-year ARR of the MY14–15 BEVs is, on average, measured, despite the electric range nearly 

doubling in the same time frame. This means that in 2017–2018, potential BEV consumers could 

purchase a new BEV for about the same price as what the used BEVs then on the market were 

sold for when new, but with significantly better specifications and capability. Note that the 

MSRP values are not inflation-adjusted, which would make the MSRPs of these two years even 

more similar. A contributing factor to this development is the release of the Tesla Model 3, 

which was first sold in July 2017 and was the top-selling PEV in 2018. The MY17 Model 3 has a 

310-mile range and a starting MSRP of $44,000, putting it at the MY14–15 market average 

MSRP, but over double the MY14–15 market average electric range. It is likely that the release 

of the Tesla Model 3 in 2017 was a significant factor in driving down the market value, and thus 

ARR, of used MY14–15 BEVs.  

 

Figure 5: Sales-weighted MSRP and electric range of all BEVs, 2012–2021. (2021 data through 

May.) 

To examine trends in retention rate over different MYs for additional vehicle 

characteristics, we further disaggregate these results by market segment and by vehicle size 

class. Figure 6 and Figure 7 disaggregate the results by powertrain and market segment, and 

powertrain and size class, respectively, and show the mean 3-year ARR of all vehicle models 

within a given MY, powertrain, and market segment/size class. For analysis by size class, we 

group all size classes into one of the two regulatory size classes, i.e., light truck (Small SUV, 

Standard SUV, Minivan) and car (everything else). Figure  indicates that there is very little 

difference in ARR between luxury and mass-market vehicles for ICEVs and HEVs; however, the 

difference is greater for PEVs. Luxury BEVs consistently retain a higher value than mass-market 
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BEVs, largely driven by high retention rates for Tesla models, though this differential has 

narrowed slightly in recent years. As shown in Figure , light trucks consistently retain their value 

better than cars; this is true for all four powertrain types and all MYs. However, the difference 

between the two regulatory size classes varies across the powertrain types; it is largest for HEVs 

and BEVs and smaller for ICEVs and PHEVs. 

 

Figure 6: Mean 3-year ARR by MY, powertrain, and market segment. The colors denote the 

powertrains, the solid lines and circles denote mass-market vehicles, and the dotted lines and x’s 

denote luxury vehicles. 
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Figure 7: Mean 3-year ARR by MY, powertrain, and regulatory size class. The colors denote the 

powertrains, the solid lines and squares denote cars, and the dotted lines and triangles denote light 

trucks. 

Table 3 shows WLS regression results obtained using the predictive model described in 

Eq. 6 in Section 2.3.3. When looking at a single MY as opposed to all MYs combined, the 

regression model tends to be more predictive (higher R2), which is unsurprising since trends by 

various characteristics have changed over time. Interestingly, when one moves from MY14 to 

MY17 to MY20, the R2 of the model decreases. This finding may be due to the diminishing 

differences in 3-year ARR between powertrains, reducing the predictive power of this variable. 

In general, most of these variables are statistically significant in each of the regression models. 

Again, we see little difference between luxury and mass-market vehicles, but substantial 

differences between cars and light trucks for all the models. OEM country also tends to be a 

significant variable, with Japan and South Korea increasing the 3-year ARR more than the other 

countries. Quantitatively, we see that Tesla models hold their value quite well: on average, a 

Tesla vehicle has a higher 3-year ARR by about 25 percentage points than a modeled American 

luxury BEV. This finding is consistent with other recent studies (Guo and Zhou 2019) and 

industry reports (Blackley 2021). 
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Table 3: Comparison of WLS Regression Models for Three-Year Adjusted Retention Rate 

Coefficients of factors in WLS regression models, dependent variable: 3-year ARR 

Variable MY2014 MY2017 MY2020 All MYs 

BEV -0.031*** 0.087*** 0.014 0.023*** 

ICEV 0.086*** 0.044*** 0.077*** 0.069*** 

HEV 0.062*** 0.037*** 0.059*** 0.058*** 

PHEV 0.109*** 0.076*** 0.122*** 0.094*** 

Luxury 0.110*** 0.121*** 0.163*** 0.128*** 

Mass Market 0.115*** 0.123*** 0.110*** 0.116*** 

Car 0.063*** 0.089*** 0.104*** 0.085*** 

Light Truck 0.162*** 0.155*** 0.169*** 0.160*** 

Germany 0.072*** 0.013 0.009 0.044*** 

Japan 0.088*** 0.085*** 0.049*** 0.085*** 

South Korea 0.042*** 0.099*** 0.089*** 0.077*** 

UK -0.007 0.032** 0.107*** 0.034*** 

US 0.030*** 0.015 0.018 0.005 

Tesla 0.304*** 0.161*** 0.291*** 0.248*** 

Constant 0.225*** 0.244*** 0.273*** 0.245*** 

R2 0.609 0.366 0.331 0.325 

Adjusted R2 0.596 0.350 0.314 0.323 

Note: *p < 0.05, **p < 0.01, ***p < 0.001 

 

3.2. IMPACTS OF COVID-19 ON VEHICLE RESIDUAL VALUE 

 The COVID-19 pandemic and its far-reaching consequences had significant impacts on 

the vehicle market in 2020 and 2021, some of which are still apparent. Reductions in new-

vehicle sales and the threat of recession changed buying habits. Vehicle resale prices dropped 

significantly during the first few months of the pandemic.  

Figure 8 shows the month-over-month average change in used-vehicle valuation, with the 

months on the horizontal axis showing the appreciation in that month from the previous one 

(e.g., negative values in January 2019 indicate depreciation from December 2018 to January 

2019). Normal vehicle depreciation behavior, exhibited throughout 2018, 2019, and early 2020, 

shows a depreciation of approximately 1% to 3% per month. As can be seen from Figure 8, since 

April 2020, there has been a marked change from this typical depreciation trend. All of the 

newer-MY vehicles experienced extremely high depreciation from March to April of 2020, 

followed by positive numbers from April to May of 2020, indicating that used vehicles 

appreciated in value. This monthly appreciation occurred in several additional months since then. 

COVID-19 has led to an increase in used-car sales attributable to a scarcity of new cars from 

auto plants, resulting from earlier shutdowns, and a greater increase in auto usage in these two 

years as people avoided mass transportation, all combined with more caution about spending on 

big items. Such a trend has remained as the impacts of inflation and indications of higher interest 
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rates have begun to be felt. These factors have combined to drive up the prices of used vehicles 

since the start of the pandemic (Rosenbaum 2020).  

  

Figure 8: Month-by-month change in used-vehicle prices 

To examine the effect of COVID-19 on the results presented in Figure , we performed the 

same analysis after removing all TMV estimates from the COVID-19 months with the most 

abnormal vehicle resale prices (April through August 2020). A comparison between the ‘with 

COVID-19 months’ and ‘without COVID months’ is shown in Figure 9. The results using all 

months’ data, as in Figure  (now grouped by MY), are replicated and shown in the brighter color 

tones while the results without the five COVID-19 months are shown behind the first set, faded. 

In general, there is little difference between including and excluding the five COVID-19 months. 

While there is some difference in the spread of the 3-year ARRs, especially in recent MYs, there 

is very little difference between the means. As such, we do not make any adjustment for the 

COVID-19 pandemic and use all months’ data for all further analysis in this report. 
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Figure 9: Comparison between analysis results including (brighter colors) and excluding (behind 

those, faded) COVID-19 months (Apr.–Aug. 2020). (A horizontal line indicates the median and x 

indicates the mean. A horizontal line across the bar that is not close to the x likely indicates (1) a small 

dataset size, and (2) the presence of outlier(s). In the case of the purple bar for 2013, it is likely due to 

both reasons, but we can specifically see the outlier dot around 38%.) 

 

3.3. COMPARISON BETWEEN SNAPSHOT METHOD AND TIME-SERIES METHOD 

 

 As previously described, one objective of this report is to identify how using time-series 

data could affect calculations of TCO. This study compares results from the time-series 

methodology with recently published data from Burnham et al. (2021), which were obtained 

using the snapshot method. The left graph in Figure 10 shows the snapshot method; each point is 

the mean ARR in 2020 for different MY vehicles, aggregated by powertrain and market segment 

subsets. As described by Burnham et al. (2021), to estimate the ARR for the entire lifetime of a 

vehicle, an exponential function is fit to the same data that is used to calculate the mean ARRs 

for each MY for each subset (Figure 10, left). The right graph in Figure 10 shows a time-series 

analog; each point is the mean ARR in different years for MY16 vehicles, aggregated again by 

powertrain and market-segment subsets. For comparison with the snapshot method, we similarly 

fit an exponential function to the same data that are used to calculate the mean ARRs for each 

year for each subset. We select MY16, as it provides a balance between having sufficient data to 

fit a model and being relatively recent, about in the middle of the range of MYs used in the 

snapshot analysis. The blue boxes in Figure  help identify the relationship between the two 

graphs. The points within the boxes represent TMV estimates for MY16 in 2020 in both graphs; 

they are similar, with minor variations attributable to differences in the datasets. Qualitatively, 

there are many similarities between the two, such as the observation that BEVs and PHEVs hold 

their value well in early years before dropping off.  
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Figure 10: ARR over time: Comparison between snapshot and time-series methods.  

We are also able to quantify the potential impact on the TCO calculations. As described 

by Burnham et al. (2021), to forecast depreciation for the lifetime of any generalized vehicle, we 

fit an exponential model to the ARR data points as written earlier in Eq. 5 (shown again below). 

Here the adjusted retention rate ARRi,m,p as a function of age (i), powertrain type (p), and market 

segment classification (m) is expressed as 

𝐴𝑅𝑅𝑖,𝑚,𝑝 = 𝑏𝑚,𝑝  ×  𝑒𝑥𝑝(𝑘𝑚,𝑝 ∙ 𝑖), Eq. 5 

where exp(km,p) is the percentage value retention from the previous year for a vehicle of market 

segment classification m and powertrain p, and bm,p is a scaling factor representing the loss in 

residual value immediately upon initial sale. As bm,p and km,p are parameters determined by the 

regression analysis, we can compare the parameter results generated by the two methods. The 

comparison, shown in Table 4, indicates that the results of the two methods are quite similar. The 

largest difference between the two in both depreciation rate and first-year value adjustment is for 

luxury HEVs, with moderate differences for luxury ICEVs and PHEVs as well. 

Table 4: Annual Depreciation Rates and First-year Adjustment by Powertrain and Market 

Segment. For each cell, the value on the left represents the snapshot method and the value on the 

right represents the time-series method (i.e., snapshot | time-series). 

Annual Depreciation Rates, 1-exp(km,p) 

 BEV HEV ICEV PHEV 

Mass-market 19.2% | 19.9% 12.1% | 11.9% 11.3% | 11.6% 16.6% | 16.2% 

Luxury 17.4% | 16.5% 12.0% | 14.0% 14.5% | 15.4% 14.3% | 15.1% 

Additional First-Year Value Adjustment, bm,p 

 BEV HEV ICEV PHEV 

Mass-market 92.2% | 93.3% 80.0% | 83.8% 80.3% | 83.1% 98.6% | 86.0% 

Luxury 97.9% | 100.8% 77.8% | 90.6% 79.5% | 94.0% 85.9% | 96.6% 

 

Using the exponential model in Eq. 5, we can then estimate the ARR of any vehicle at 

any age. We use Eq. 5 and the parameters in Table 4 to calculate the ARR using these two 

methods after 15 years, which is the typical lifetime used in the base-case TCO analyses. The 
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results, shown in Table 5, indicate that the snapshot method provides higher 15-year ARRs in 

more cases than those demonstrating the reverse pattern. The difference in 15-year ARR between 

these two methods is between -1.2 and +2 percentage points, depending on the powertrain and 

market segment. This is a small difference when considering a typical MSRP of $20,000–

$50,000.  

Table 5: Base-case TCO Calculation Input Comparison for 15-Year ARRs. For each cell, the value 

on the left represents the snapshot method and the value on the right represents the time-series 

method (i.e., snapshot | time-series). 

15-year ARRs for snapshot and time-series methods (i.e., snapshot | time-series) 

 BEV HEV ICEV PHEV 

Mass-market 3.77% | 3.34% 11.56% | 12.53% 13.29% | 13.07% 6.48% | 6.07% 

Luxury 5.57% | 6.74% 11.43% | 9.43% 7.58% | 7.65% 8.49% | 8.29% 

 

 Light trucks have been seen to retain their value better than cars. Following Burnham et 

al. (2021), we account for differences in retention rates across size classes by performing a size-

class adjustment after determining the parameters bm,p and km,p as described above. We calculate 

the average difference between the ARRs of the two size classes (cars and light trucks) within 

each powertrain type (but not segmenting by luxury/mass-market because of small sample sizes), 

and adjust the ARRs for each powertrain type and market segment as a proportion of the average 

ARR for each year by  

𝐴𝑅𝑅𝑖,𝑝,𝑘 = 𝐴𝑅𝑅𝑖,𝑝  × (1 ± 𝑆𝑝 / 2), Eq. 7 

where i is the age of the vehicle, p labels each powertrain, k represents the size class, and Sp is 

the adjustment for the size of each powertrain. A comparison between these proportional 

differences for cars and light trucks for the two methods is shown in Table 6. For all powertrain 

types for both methods, we make an upward adjustment for light trucks and a downward 

adjustment for cars. The largest difference between the two methods occurs for BEVs and 

ICEVs, with small differences for the other two powertrain types. 

Table 6: Proportional Differences (of Average ARR) between Size Classes (Cars and Light Trucks). 

For each cell, the value on the left represents the snapshot method and the value on the right 

represents the time-series method (i.e., snapshot | time-series). 

Powertrain BEV HEV ICEV PHEV 

Difference between 

size classes 
21.6% | 32.8% 22.6% | 18.3% 3.2% | 10.7% 7.6% | 10.8% 

 

As illustrated above, the difference in 15-year retention rate (the base-case TCO lifetime) 

between these two methods is less than 2 percentage points, depending on the powertrain and 

market segment. The difference in size-class adjustment between these two methods is at most 

about 11%. Since this is the proportional difference of average ARR and the 15-year ARRs 

shown in Table 5 are on the order of 3%–13%, the difference in size-class adjustment affects the 

15-year ARR by only about 1 percentage point at most. Therefore, the greatest potential net 
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effect on TCO of using the time-series method rather than the snapshot method is about 3% of 

the original value of the vehicle. 
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4. DISCUSSION AND CONCLUSIONS 

 

This study explores the residual value trends over various MYs of different powertrain 

technologies and several other vehicle characteristics using historical TMV data from Edmunds. 

The primary objectives of this study were to examine how different powertrains’ residual values 

have evolved over time amid rapidly improving PEV technology, accounting for important 

factors such as market segment, size class, and OEM country, and to compare depreciation 

trends between competing calculation methods in order to identify the potential impact on TCO 

calculations. We find that: 

1. After exhibiting quite low 3-year ARRs in MYs 2014–2016, PHEVs and especially 

BEVs have increasingly retained value, to the point where they have retained value 

better than their conventional counterparts in recent years;  

2. There is very little difference in retention rate between luxury and mass-market 

models for ICEVs and HEVs; however, luxury BEVs consistently outperform mass-

market BEVs, largely driven by high retention rates for Tesla models;  

3. Light trucks consistently retain their value better than cars for all four powertrain 

types and all MYs; and  

4. The difference between the snapshot and time-series methods, and therefore the 

potential impact on TCO calculations, is small, resulting in at most a net effect on 

TCO of 3% of the vehicle’s original value. 

A primary objective of this study was to examine how different powertrains’ residual 

values have evolved over time, as few, if any, researchers have looked at these trends over time. 

Understanding the residual value/depreciation of vehicles with newer, more advanced powertrain 

technologies is crucial in identifying when these vehicles become cost-competitive with their 

conventional counterparts. Changes in vehicle characteristics may lead to changes in residual 

value, affecting estimations of when cost parity of advanced vehicle technologies may occur. 

We find that more mature powertrain technologies, such as ICEV and HEV, have more 

consistent 3-year ARRs over time, while those of the newer powertrain technologies vary more 

over time. After experiencing quite low 3-year ARRs in MYs 2014–2016, PHEVs and especially 

BEVs increasingly retain value, to the point where they have retained value better than their 

conventional counterparts in recent years. It is important to note that this finding is just for the 3-

year residual value and may not extend to the entire lifetime of a vehicle; however, it is clear that 

these advanced powertrain types have increasingly held their value over the most recent 5–7 

MYs. A potential explanation is that PEVs have seen rapid increases in technology and 

capability without a significant rise in price, driving down the demand for and therefore the price 

of older, used PEVs. The fact that we have seen comparable or higher PEV retention rates in the 

last four years may also suggest that consumers increasingly do not perceive new PEVs to have 

substantially higher capabilities than several-year-old used vehicles. As was shown in Figure 4, 

the U.S. sales-weighted BEV electric range increased only 5.6% from 2018 to 2021, from 280 to 

296 miles, though this is true globally as well (IEA 2021). 

Interestingly, perceived depreciation of both PEVs and ICEVs also affects new PEV 

adoption. If a lessor expects a lower residual value for a given vehicle at the end of the lease 

term, the monthly payments on a lease will be higher to account for the greater deprecation rate. 

Vehicle purchasers do tend to be less focused on a comprehensive TCO calculation considering 
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depreciation. A survey of respondents in Europe estimated that depreciation was the single 

largest cost of owning and operating a vehicle, yet only half of respondents had an approximate 

knowledge of depreciation rates, and only 8% planned to use depreciation rates in an ex-ante cost 

computation before purchase (Hagman et al 2017).  However, concern about potential 

obsolescence of ICEVs may lead consumers to delay purchase of a conventional vehicle or to 

switch to an electric vehicle (Neil 2018; Huetter 2021). Despite the COVID-19 pandemic’s 

negative effect on vehicle sales, U.S. PEV sales only decreased by 3.8% from 2019 to 2020 

compared with a 15.1% decrease in total LDV sales. U.S. PEV sales increased by over 100% in 

2021 relative to 2020, compared to only a 3.3% increase in LDV sales (ANL 2021). 

Disaggregating powertrain by market segment, we find that there is very little difference 

in retention rate between luxury and mass-market ICEVs and HEVs; however, the difference is 

greater for PEVs. Luxury BEVs consistently retain higher residual value than mass-market 

BEVs, and Tesla vehicles in particular hold high residual values. Disaggregating powertrain by 

size class reveals that light trucks consistently retain their value better than cars; this is true for 

all four powertrain types and all MYs. However, the difference between the two regulatory size 

classes varies across the powertrain types; it is largest for HEVs and BEVs and smaller for 

ICEVs and PHEVs. The difference between the two size classes is quite consistent over time for 

the more mature powertrain technologies, ICEV and HEV, and is more volatile for PEVs. 

Our regression model for 3-year ARR, including the variables powertrain type, market 

segment, size class, OEM country, and Tesla or not, is less predictive for recent MYs than for 

older ones. This finding may be due to diminishing differences in 3-year ARR between 

powertrains, decreasing the predictive power of this variable. We find that regardless of MY, 

many of the variables included are statistically significant. Finally, we find that Tesla vehicles 

hold their value quite well, experiencing 3-year ARRs up to 25 percentage points higher than 

similar non-Tesla vehicles. 

The COVID-19 pandemic has changed typical depreciation behavior. Since April 2020, 

used vehicles have experienced extreme and unusual depreciation trends, actually appreciating in 

value at times because of high purchase demand. However, there is little difference between 

including or excluding the five COVID-19 months in estimating the 3-year ARRs for all MYs. 

A second primary objective of this study was to compare depreciation trends between the 

snapshot and time-series methods to identify the potential impact on vehicle cost calculations. 

The results used by Burnham et al. (2021) were based on the snapshot method, which does not 

actually track the residual value of a single vehicle over time, but rather obtains a “snapshot” of 

the residual value of multiple MYs at one point in time. The time-series method, which tracks the 

residual value of a cohort of vehicles from the same MY over time, is a more accurate way of 

examining depreciation trends over different MYs, which is especially important amid recent 

rapidly advancing PEV technology. 

Qualitatively, we find that the difference between the snapshot and time-series methods, 

and thus the potential impact on TCO calculations, is small. Quantitatively, we find that the 

difference in 15-year ARR, a typical TCO lifetime, between these two methods is between -1.2 

and +2 percentage points, depending on the powertrain and market segment. The difference in 

size-class adjustment between these two methods also affects 15-year ARR by only about 1 

percentage point at most. Therefore, we expect the greatest potential net effect on TCO of using 

the time-series method rather than the snapshot method to be about 3% of the original value of 
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the vehicle. In considering the potential range of values for some of the other key variables 

included in TCO calculations, this is a relatively insignificant effect. 

One of our most important findings is that PEVs now maintain value more effectively 

than before, demonstrating that they are increasingly comparable to their ICEV and HEV 

counterparts. This is an important indication that consumer confidence in PEVs is growing amid 

rapid advancements in advanced powertrain capability. Improving charging infrastructure 

availability may also play a role here, but our data cannot directly capture that impact. Since low 

residual values have long been a market barrier to widespread purchase of new PEVs, this 

finding is a promising sign for future PEV adoption.  

An important stipulation is that our analysis of BEV and PHEV retention rates 

incorporates current federal incentives. Further technology research and development may 

accelerate the overall adoption of PEVs by reducing new-purchase costs and simultaneously 

increasing residual value. However, without specific incentives for used vehicles, higher used-

vehicle prices may reduce penetration of these low-emission vehicles in disadvantaged 

communities. Incentivizing PEV adoption could be an effective way to increase electric travel, 

which would eventually result in decreased fossil-fuel consumption and emissions. 

As discussed above, we did find that the difference in depreciation between the snapshot 

and the time-series method has little effect on TCO calculations. While this observation is 

promising, these results are based on MY16 vehicles. In the time since these vehicles first came 

onto the market, advanced powertrain technologies have continued to undergo rapid 

advancements. Therefore, continuing to track residual values of newer-MY PEVs will be 

important work, both to confirm that these vehicles are indeed holding their value as well as 

conventional counterparts through three years and to observe the potential effect on TCO. 

Furthermore, additional data sources should be used to validate our findings, which may be 

subject to biases associated with a single data provider. As more PEVs continue to become 

available in used-vehicle markets, future research in this area will be important to further support 

our finding that PEVs retain value as well as or better than their ICEV and HEV counterparts. 
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